Gas/particle partitioning and global distribution of polycyclic aromatic hydrocarbons--a modelling approach.
نویسندگان
چکیده
The global atmospheric distribution and long-range transport (LRT) potential of three polycyclic aromatic hydrocarbons (PAH) - anthracene, fluoranthene and benzo[a]pyrene - are studied. The model used is a global aerosol-chemistry-transport-model, which is based on an atmospheric general circulation model. The model includes an in-built dynamic aerosol model coupled to two-dimensional surface compartments. Several parameterisations of gas/particle partitioning and different assumptions of degradation in the aerosol particulate phase were tested. PAHs are mostly distributed in the source regions but reach the Arctic and the Antarctic. The Canadian Arctic is predicted to be significantly less affected by mid-latitude PAH emissions than the European Arctic. Re-volatilisation is significant for semivolatile PAHs. Accumulation of semivolatile PAHs in polar regions, however, is not indicated. The model study suggests that gas/particle partitioning in air drastically influences the atmospheric cycling, the total environmental fate (e.g. compartmental distributions) and the LRT potential of the substances studied. A parameterisation which calculates the gas/particle partitioning assuming absorption into organic matter and adsorption to black carbon (soot) agrees best with the observations at remote sites. The study provides evidence that the degradation in the particulate phase must be slower than that in the gas-phase. The predicted concentrations of the semivolatile PAHs anthracene and fluoranthene in near-ground air at remote sites in mid and high northern latitudes are in line with measured concentrations, if adsorption of the substances to soot combined with absorption in particulate organic matter is assumed to determine gas/particle partitioning, but cannot be explained by adsorption alone (Junge-Pankow parameterisation of gas/particle partitioning). The results suggest that PAHs absorbed in the organic matrix of particulate matter is shielded from the gas-phase.
منابع مشابه
Long-range atmospheric transport of polycyclic aromatic hydrocarbons: a global 3-D model analysis including evaluation of Arctic sources.
We use the global 3-D chemical transport model GEOS-Chem to simulate long-range atmospheric transport of polycyclic aromatic hydrocarbons (PAHs). To evaluate the model's ability to simulate PAHs with different volatilities, we conduct analyses for phenanthrene (PHE), pyrene (PYR), and benzo[a]pyrene (BaP). GEOS-Chem captures observed seasonal trends with no statistically significant difference ...
متن کاملCharacterization of Polycyclic Aromatic Hydrocarbon Particulate and Gaseous Emissions from Polystyrene Combustion
The partitioning of polycyclic aromatic hydrocarbons (PAHs) between the particulate and gaseous phases resulting from the combustion of polystyrene was studied. A vertical tubular flow furnace was used to incinerate polystyrene spheres (100-300 μm) at different combustion temperatures (800-1200 °C) to determine the effect of temperature and polystyrene feed size on the particulate and gaseous e...
متن کاملLong-range Atmospheric Transport of Polycyclic Aromatic Hydrocarbons is Worldwide Problem - Results from Measurements at Remote Sites and Modelling.
Despite the fact that the occurrence of polycyclic aromatic hydrocarbons (PAHs) in the atmospheric environment has been studied for decades the photochemistry, deposition and, consequently, the long-range transport potential (LRTP) are not well understood. The reason is gas-particle partitioning (GPP) in the aerosol, its sensitivity to temperature and particulate phase composition, and sampling...
متن کاملAdsorptive and absorptive contributions to the gas-particle partitioning of polycyclic aromatic hydrocarbons: state of knowledge and recommended parametrization for modeling.
Four contrasting descriptions of the gas-particle partitioning of SOCs are currently used: the Junge-Pankow adsorption model, the empirical Finizio organic matter (OM) absorption relationship, the Harner-Bidleman OM absorption model, and a dual black carbon (BC) adsorption and OM absorption model. Use of these four descriptions in a box model resulted in very different global fates, particularl...
متن کاملAssessing the influence of secondary organic versus primary carbonaceous aerosols on long-range atmospheric polycyclic aromatic hydrocarbon transport.
We use the chemical transport model GEOS-Chem to evaluate the hypothesis that atmospheric polycyclic aromatic hydrocarbons (PAHs) are trapped in secondary organic aerosol (SOA) as it forms. We test the ability of three different partitioning configurations within the model to reproduce observed total concentrations in the midlatitudes and the Arctic as well as midlatitude gas-particle phase dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemosphere
دوره 76 1 شماره
صفحات -
تاریخ انتشار 2009